

Isomerization of trans-[Ru(PTA)4Cl2] to cis-[Ru(PTA)4Cl2] in Water and Organic Solvent: Revisiting the Chemistry of $[Ru(PTA)_{4}Cl_{2}]$

Charles A. Mebi and Brian J. Frost*

*Department of Chemistry, MS 216, Uni*V*ersity of Ne*V*ada, Reno, Ne*V*ada 89557*

Received May 18, 2007

trans- $[Ru(PTA)_4Cl_2]$ (trans-1), (PTA = 1,3,5-triaza-7-phosphatricyclo^{[3.3.1.13,7}]decane) has been isolated and structurally characterized by X-ray crystallography. The structure reveals ruthenium in a slightly distorted-octahedral environment bound to two axial chlorides and four equatorial PTA ligands. In organic solvents, trans-**1** undergoes a relatively clean isomerization to cis-**1**. In aqueous environments, trans-**1** undergoes a more complicated transformation involving isomerization, protonation, and ligand substitution affording cis-**1** and a series of structurally related molecules. From these results, we conclude that the synthesis of [Ru(PTA)4Cl2] (**1)** affords trans-**1**, not cis-**1**, as earlier reports suggest. The water-soluble hydride cis-[Ru(PTA)4H2] (**2**) has also been synthesized from the reaction of trans-[Ru(PTA)₄Cl₂] with excess sodium formate. Compound 2 is stable in deoxygenated water and undergoes H/D exchange with D_2O ($t_{1/2} \approx 120$ min, at 25 °C). The solid-state structures of both *trans*-1 and 2 are described.

Introduction

Over the past few years, there has been a resurgence of attention given to the design and synthesis of water-soluble metal complexes of 1,3,5-triaza-7-phosphaadamantane (PTA).¹ Inorganic and organometallic complexes of PTA have found applications in coordination chemistry,² medicine,³ and aqueous/biphasic catalysis.4 The earliest reports on the synthesis and catalytic activity of PTA complexes involved the ruthenium compound $[Ru(PTA)_4Cl_2]$ (1), synthesized in essentially quantitative yield by the reaction of PTA with

10.1021/ic700971n CCC: \$37.00 © 2007 American Chemical Society **Inorganic Chemistry,** Vol. 46, No. 17, 2007 **7115** Published on Web 07/25/2007

RuCl3'3H2O in ethanol (Scheme 1).5 Compound **¹** has been employed as a catalyst for the hydrogenation of aldehydes,⁵ olefins,⁵ and $CO₂⁶$ in aqueous or biphasic media. In the previous report on the synthesis of **1**, crystals obtained from an aqueous solution of $[Ru(PTA)_4Cl_2]$ were analyzed by X-ray crystallography and determined to be *cis*-[Ru- $(PTA)_{4}Cl_{2}$, which led to the conclusion that the synthesis of **1** affords the cis isomer even though the 31P NMR

^{*} To whom correspondence should be addressed. E-mail: Frost@unr.edu. (1) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. *Coord. Chem. Re*V. **²⁰⁰⁴**, *²⁴⁸*, 955-993 and references therein.

⁽²⁾ For example, see: (a) Mebi, C. A.; Frost, B. J. *Z. Anorg. Allg. Chem.* **²⁰⁰⁷***, 633*, 368-371. (b) Mohr, F.; Falvello, L. R.; Laguna, M. *Eur. J. Inorg. Chem.* **²⁰⁰⁶**, *³¹*, 3152-3154. (c) Wong, G. W.; Harkreader, J. L.; Mebi, C. A.; Frost, B. J. *Inorg. Chem.* **²⁰⁰⁶**, 45, 6748-6755*.* (d) Frost, B. J.; Mebi, C. A.; Gingrich, P. W. *Eur. J. Inorg. Chem.* **²⁰⁰⁶**, 1182-1189*.* (e) Frost, B. J.; Bautista, C. M.; Huang, R.; Shearer, J. *Inorg. Chem.* **²⁰⁰⁶**, *⁴⁵*, 3481-3483. (f) Lidrissi, C.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M.; Gonsalvi, L.; Peruzzini, M. *Angew. Chem., Int. Ed.* **²⁰⁰⁵**, *⁴⁴*, 2568-2572.

⁽³⁾ For example, see: (a) Ang, W. H.; Dyson, P. J. *Eur. J. Inorg. Chem.* **2006**, 4003-4018. (b) Dorcier, A.; Ang, W. H.; Bolaño, S.; Gonsalvi, L.; Juillerat-Jeannerat, L.; Laurenczy, G.; Peruzzini, M.; Phillips, A. D.; Zanobini, F.; Dyson, P. J. *Organometallics* **²⁰⁰⁶**, *²⁵*, 4090-4096. (c) Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T. J.; Sava, G.; Dyson, P. J. *J. Med. Chem.* **²⁰⁰⁵**, *⁴⁸*, 4161-4171. (d) Dorcier, A.; Dyson, P. J.; Gossens, C.; Rothlisberger, U.; Scopelliti, R.; Tavernelli, I. *Organometallics* **²⁰⁰⁵**, *²⁴*, 2114-2123. (e) Allardyce, C. S.; Dyson, P. J.; Ellis, D. J.; Heath, S. L. *Chem. Commun.* **²⁰⁰¹**, 1396-1397.

⁽⁴⁾ Example of recent publications: (a) Mebi, C. A.; Nair, R. P.; Frost, B. J. *Organometallics* **²⁰⁰⁷***, 26,* ⁴²⁹-438. (b) He, Z.; Tang, X.; Chen, Y.; He, Z. *Ad*V*. Synth. Catal.* **²⁰⁰⁶**, *³⁴⁸*, 413-417. (c) Krogstad, D. A.; Cho, J.; DeBoer, A.; Klitzke, J. A.; Sanow, W. R.; Williams, H. A.; Halfen, J. A. *Inorg. Chim. Acta* **²⁰⁰⁶**, *³⁵⁹*, 136-148. (d) Mebi, C. A.; Frost, B. J. *Organometallics* **²⁰⁰⁵**, *²⁴*, 2339-2346. (e) Frost, B. J.; Mebi, C. A. *Organometallics* 2004, 23, 5317-5323. (f) Bolaño, S.; Gonsalvi, L.; Zanobini, F.; Vizza, F.; Bertolasi, V.; Romerosa, A.; Peruzzini, M. *J. Mol. Catal. A: Chem.* **²⁰⁰⁴**, *²²⁴*, 61-70. (g) Dyson, P. J.; Ellis, D. J.; Henderson, W.; Laurenczy, G. *Ad*V*. Synth*. *Catal*. **²⁰⁰³**, *³⁴⁵*, 216-221. (h) Smolenski, P.; Pruchnik, F. P.; Ciunik, Z.; Lis, T. *Inorg. Chem*. **²⁰⁰³**, *⁴²*, 3318-3322. (i) Akbayeva, D. N.; Gonsalvi, L.; Oberhauser, W.; Peruzzini, M.; Vizza, F.; Bruggeller, P.; Romerosa, A.; Sava, G.; Bergamo, A. *Chem. Commun.* **²⁰⁰³**, 264- 265. (j) Kovács, J.; Todd, T. D.; Reibenspies, J. H.; Joó, F.; Darensbourg, D. J. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 3963-3969. (k) Pruchnik, F. P.; Smolenski, P. *Appl. Organomet. Chem.* **1999**, *13*, 829–836. (1) Pruchnik, F. P.; Smolenski, P.; Galdecka, E.; Galdecki, Z. *Inore, Chim. Acta* 1999, 293, 110–114. (m) Pruchnik, F. P.: Z. *Inorg. Chim. Acta* **¹⁹⁹⁹**, *²⁹³*, 110-114. (m) Pruchnik, F. P.; Smolenski, P.; Galdecka, E.; Galdecki, Z. *New J. Chem*. **¹⁹⁹⁸**, 1395- 1398.

^{(5) (}a) Darensbourg, D. J.; Joó, F.; Kannisto, M.; Katho, A.; Reibenspies, J. H.; Daigle, D. J. *Inorg. Chem.* **1994**, 13 , $200-208$. (b) Darensbourg, J. H.; Daigle, D. J. *Inorg. Chem.* **¹⁹⁹⁴**, *¹³*, 200-208. (b) Darensbourg, D. J.; Joo´, F.; Kannisto, M.; Katho, A.; Reibenspies, J. H. *Organometallics* **¹⁹⁹²**, *¹¹*, 1990-1993.

Scheme 1

$$
RuCl_3 + xs \bigwedge_{N \searrow N}^{P} \bigwedge_{\Delta} \xrightarrow{\text{ethanol}} [Ru(PTA)_4Cl_2]
$$
\n
$$
PTA
$$

spectrum contained only a single resonance.⁵ Though *cis*- $[Ru(PTA)₄Cl₂]$ has been isolated and characterized by X-ray crystallography, the trans isomer has remained unidentified.

The hydride species *cis*-[Ru(PTA)4H2] (**2**), and [RuCl- (PTA)4H] have been implicated as the catalytically active species in hydrogenation.^{5,6} An understanding of the aqueous chemistry of **1** and derivatives such as **2** are important in the understanding and elucidation of reaction mechanisms involving metal hyrides. $[Ru(PTA)_4H_2]$ and $[Ru(PTA)_4CH]$ have been generated in situ by the reaction of **1** with 60 bar H_2 or by the reaction of $Ru(OH_2)_6^{2+}$ with PTA and H_2 .^{6a} The decomposition of $(\eta^6$ -arene)RuPTACl₂ in aqueous solutions, at 60 \degree C and 100 bar H₂, has also been shown to result in the formation of [Ru(PTA)_4H_2] and [Ru(PTA)_4CH] in addition to other products.7

Herein, we report the solution and solid-state characterization of *trans*-[$Ru(PTA)_{4}Cl_{2}$] as well as evidence that *trans*-1 isomerizes in solution, yielding *cis*-**1**. The synthesis, reactivity, and solid-state structure of the water-soluble ruthenium dihydride cis -[Ru(PTA)₄H₂] are also reported.

Experimental Section

Materials and Methods. All reagents were obtained from commercial sources, checked by NMR and GC/MS, and used as received. PTA⁸ and $\text{[Ru(PTA)_4Cl}_2\text{]}^5$ were prepared according to the literature procedures. The NMR spectra were recorded on a Varian NMR System 400 spectrometer. ¹H NMR spectra were referenced to residual solvent relative to TMS. Phosphorus chemical shifts are relative to an external reference of 85% H_3PO_4 in D_2O with positive values downfield of the reference. UV-vis spectra were recorded on a Hewlett-Packard 8453 diode-array spectrometer. The IR spectra were recorded on Perkin-Elmer 2000 FT-IR spectrometer, in a 0.1 mm Ca F_2 cell for solutions or as a KBr pellet for solid samples.

Synthesis of *trans***-[Ru(PTA)₄Cl₂] (***trans***-1**). *trans***-1** was synthesized following the same procedure reported for the preparation of *cis*-[Ru(PTA)₄Cl₂] (Scheme 1).⁵ An ethanol solution of RuCl₃ \cdot 3H2O (1.00 g, 3.8 mmol) and excess PTA (3.60 g, 23.0 mmol) were refluxed under nitrogen for 4 h affording 3.0 g of *trans*-[Ru- $(PTA)_4Cl_2$] as a yellow precipitate (98% yield). The $^{31}P{^1H}$ and ¹H NMR spectra of a D₂O solution of *trans*-1 are consistent with those reported by Darensbourg and co-workers.^{5 1}H NMR (500 MHz, D2O): *δ* 4.52 (s, 24H NC*H2*N); 4.24 (s, 24H PC*H*2N). 31P- 1H NMR (162 MHz): δ -51.6 (s, 4P) in D₂O; -49.29 (s, 4P) in CDCl3. Isomerization occurred upon standing in solution and was evident by the appearance of new peaks in the 31P NMR spectrum assigned to *cis*-1. ³¹P{¹H}: δ -23.40, (t, *cis*-PTA,

Figure 1. Thermal ellipsoid representation of *trans*-**1** (50% probability) including the atomic numbering scheme. Hydrogen atoms have been omitted for clarity.

 $^{2}J_{PP} = 21.7$ Hz); and -57.64 (t, *trans*-PTA, $^{2}J_{PP} = 21.7$ Hz). Orange crystals of *trans*-**1** were obtained by the slow diffusion of diethyl ether into a CH_2Cl_2 solution of 1.

Synthesis of *cis***-[Ru(PTA)₄H₂] (2).** A suspension of 1 (0.80 g, 1.0 mmol) and HCOONa (0.68 g, 10 mmol) was refluxed for 12 h under nitrogen in 50 mL methanol, yielding a pale yellow precipitate. The solvent was removed by cannula, and the precipitate was washed three times with freshly distilled methanol. The resulting solid was dried under vacuum, affording 0.46 g of **2** (62% yield) as a white crystalline powder. ¹H NMR (400 MHz, D_2O): δ 4.34 and 4.26 (AB spin system, ${}^{2}J_{HAHB} = 14.5$ Hz, 24H NC*H*₂N), 3.63 (s, 12H PC*H*₂N), 3.59 (s, 12H PC*H*₂N), -11.50 (m, 2H, Ru-H). ³¹P{¹H} NMR (162 MHz, D₂O): δ -26.60 (t, *cis*-PTA, ²*J*_{PP} = 25.0 Hz), -32.19 (t, *trans*-PTA, ² J_{PP} = 25.0 Hz). IR (KBr): *ν*- $(Ru-H) = 1800$ (br) cm⁻¹. Colorless block crystals of 2 suitable for X-ray diffraction were obtained by the slow diffusion of acetone into an aqueous solution of **2**.

X-ray Crystallography. Crystals of *trans*-**1** and **2** suitable for X-ray diffraction were obtained as described above. The data were collected at $123(\pm 2)$ K for *trans*-1 and $100(\pm 2)$ K for 2 on a Bruker APEX CCD diffractometer with Mo Kα radiation ($λ = 0.71073$) Å) and a detector-to-crystal distance of 4.94 cm. A full sphere of data was collected utilizing four sets of frames, 600 frames per set, with 0.5° rotation about *ω* between frames, and an exposure time of 10 s per frame. Data integration, correction for Lorentz and polarization effects, and final cell refinement were performed using *SAINTPLUS* and corrected for absorption using *SADABS*. The structures of *trans*-**1** and **2** were solved using direct methods followed by successive least-squares refinement on $F²$ using the *SHELXTL 5.12* software package.⁹ All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated positions. Crystallographic data and data collection parameters are listed in Table 1.

Results and Discussion

The synthesis of **1** has been previously described by Darensbourg and co-workers and may exist as two geometric isomers, *trans*-**1** and *cis*-**1**. ⁵ The cis isomer was isolated from an aqueous solution of **1**, leading to the reasonable conclusion

^{(6) (}a) Laurenczy, G.; Joo´, F.; Na´dasdi, L. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 5083- 5088. (b) Joó, F.; Laurenczy, G.; Karády, P.; Elek, J.; Nádasdi, L.; Roulet, R. *Appl. Organomet. Chem.* **²⁰⁰⁰**, *¹⁴*, 857-859. (c) Joo´, F.; Laurenczy, G.; Na´dasdi*,* L.; Elek*,* J. *Chem. Commun.* **¹⁹⁹⁹**, 971- 972.

⁽⁷⁾ Horváth, H.; Laurenczy, G.; Kathó, Á *J. Organomet. Chem.* **2004**, 689, 1036-1045. *⁶⁸⁹*, 1036-1045.

^{(8) (}a) Daigle, D. J. *Inorg. Synth.* **¹⁹⁹⁸**, *³²*, 40-45. (b) Daigle, D. J.; Pepperman, A. B., Jr.; Vail, S. L. *J. Heterocycl. Chem.* **¹⁹⁷⁴**, *¹¹*, 407- 408.

⁽⁹⁾ *XRD Single-Crystal Software*; Bruker Analytical X-ray Systems: Madison, WI, 1999.

Table 1. Crystal Data and Structure Refinement for *trans*-**1** and **2**

	$trans-Ru(PTA)4Cl2$	cis -Ru(PTA) ₄ H ₂
empirical formula	$C_{25.5}H_{48}Cl_2N_{12}O_2P_4Ru$	$C_{24}H_{62}N_{12}O_{6,25}P_4Ru$
fw	850.61	843.81
T(K)	123(2)	100(2)
λ (Å)	0.71073	0.71073
cryst syst	orthorhombic	monoclinic
space group	Pca2 ₁	$P2_1/n$
a(A)	19.0404(18)	10.8018(2)
b(A)	13.3413(12)	15.7700(2)
c(A)	13.7702(13)	21.6830(3)
α (deg)	90	90
β (deg)	90	97.66
γ (deg)	90	90
$V(A^3)$	3498.0(6)	3660.59(10)
Z	4	4
D_{calc} (Mg/m ³)	1.657	1.531
abs coeff (mm^{-1})	0.835	0.659
cryst size $(mm3)$	$0.26 \times 0.06 \times 0.02$	$0.21 \times 0.12 \times 0.10$
θ range for data collection (deg)	$1.53 - 24.99$	$1.60 - 29.58$
index ranges	$-22 \le h \le 10$	$-14 \le h \le 14$
	$-15 \le k \le 15$	$-21 \le k \le 21$
	$-15 \le l \le 16$	$-30 \le l \le 27$
reflns collected	17867	46 098
indep reflns	6045	10 199
	$[R_{\text{int}} = 0.1302]$	$[R_{\text{int}} = 0.0497]$
abs correction	SADABS	SADABS
data/rest/param	6045/15/433	10199/0/489
GOF F^2	0.819	1.021
final R indices	$R_1 = 0.0536$	$R_1 = 0.0345$
$[I \geq 2\sigma(I)]$	$R_2 = 0.0902$	$R_2 = 0.0683$
R indices	$R_1 = 0.0897$	$R_1 = 0.0573$
(all data)	$R_2 = 0.0999$	$R_2 = 0.0770$
CCDC no.	642802	642803

that the cis isomer is formed in the reaction. The cis geometry is, however, inconsistent with the observation of a single resonance at -47.3 ppm in the ³¹P 1H NMR spectrum of 1 in D₂O ^{5,10} 1 in $D_2O^{5,10}$

During a reinvestigation of some of the chemistry previously reported for **1**, we isolated orange crystals of *trans*-**1** from a dichloromethane solution (Figure 1). *trans*-[Ru- $(PTA)_{4}Cl_{2}$] crystallized in the orthorhombic space group *Pca*21. The solid-state structure shows ruthenium in a distorted-octahedral environment bound to two mutually trans chloride ligands and four PTA ligands occupying equatorial positions of the octahedron cis to the chloride ligands (Figure 2). Relevant structural parameters of *trans*- $[Ru(PTA)₄Cl₂]$ are presented in Table 2. The two $Ru-Cl$ bond lengths of *trans*-**1** are identical, 2.437(2) Å, and slightly shorter than those reported for the cis isomer, 2.488(2) and 2.503(2) \AA ⁵ The Ru-P bond distances in *trans*-1 range from 2.316 to 2.353 Å, slightly longer than the Ru-P bond lengths trans to Cl in $cis-1$ (2.260(2) Å), and shorter than the $Ru-P$ bond lengths trans to phosphorus in $cis-1$ (2.370(2) Å).⁵ The (N)C-N distances of the PTA ligands are found to be in the range of 1.41 to 1.50 \AA , consistent with those of nonprotonated PTA ligands.11 The bond angles of the *trans*-PTA ligands, $P(1) - Ru - P(3) = 161.538$ ° and $P(2) - Ru P(4) = 164.248^{\circ}$ for *trans*-1, significantly deviate from

Figure 2. Thermal ellipsoid representation (50% probability) of *trans*-**1** showing the distorted-octahedral environment. For clarity, only the P, Cl, and Ru atoms are shown.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for *trans*-**1**, *cis*-**1**, and **2**

	trans-1	$cis-1^5$	2
$Ru-P1$	2.353(2)	2.267(2)	2.2999(5)
$Ru-P2$	2.349(2)	2.351(2)	2.2990(5)
$Ru-P3$	2.333(2)	2.252(2)	2.2904(6)
$Ru-P4$	2.317(2)	2.388(2)	2.2904(6)
$Ru-CI/H1$	2.437(2)	2.488(2)	1.60(2)
$Ru-CI/H2$	2.438(2)	2.503(2)	1.62(2)
$P1 - Ru - P2$	88.73(8)	94.2(1)	100.402(19)
$P1 - Ru - P3$	161.53(8)	96.5(1)	100.002(19)
$P1 - Ru - P4$	91.37(8)	100.1(1)	99.780(19)
$P2-Ru-P3$	90.21(8)	92.2(1)	98.89(2)
$P2 - Ru - P4$	164.24(8)	164.8(1)	99.38(2)
$P3 - Ru - P4$	94.58(9)	91.3(1)	150.05(2)
$Cl/H1 - Ru - Pl$	81.76(8)	169.7(1)	84.6(9)
$Cl/H1-Ru-P2$	102.58(8)	82.1(1)	174.9(9)
$Cl/H1-Ru-P3$	80.48(8)	93.3(1)	78.9(8)
$Cl/H1-Ru-P4$	91.37(8)	83.0(1)	80.9(8)
$Cl/H2-Ru-P1$	100.46(8)	86.2(1)	174.6(8)
$Cl/H2-Ru-P2$	81.38(8)	90.0(1)	85.0(8)
$Cl/H2-Ru-P3$	97.60(8)	176.3(1)	78.8(8)
$Cl/H2-Ru-P4$	83.11(8)	85.7(1)	79.3(8)
$Cl/H1 - Ru - Cl/H2$	175.56(8)	84.2(1)	90.0(12)

Scheme 2

linearity much more so than that of $Cl(1)-Ru-Cl(2)$, 175.568°. This deviation from linearity of the P-Ru-^P angles may be attributed to steric encumbrance of the phosphine ligands at the equatorial plane, Figure 2.

Isomerization of *trans***-1 in Chloroform.** After the isolation of *trans*-**1** in the solid form, we examined the reactivity of *trans*-**1** in solution. Specifically, we looked for evidence of isomerization to the previously isolated *cis*-**1** (Scheme 2). Freshly prepared solutions of *trans*-**1** provide ¹H and ³¹P NMR spectra similar to that previously reported for **1**. The ³¹ P {¹H} NMR spectrum of [Ru(PTA)₄Cl₂] in CDCl₃ contains a single resonance at -49.29 ppm. Over the

⁽¹⁰⁾ A single 31P{1H} resonance would, of course, be expected for *cis*- $[Ru(PTA)₄Cl₂]$ if the molecule was fluxional.

⁽¹¹⁾ Darensbourg, D. J.; Decuir, T. J.; Reibenspies, J. H. *Aqueous Organometallic Chemistry and Catalysis*; Horvath, I. T., Joo´, F., Eds.; High Technology; Kluwer: Dordrecht, The Netherlands, 1995; pp 61-80.

Figure 3. ³¹ $P{^1H}$ NMR spectra of $[Ru(PTA)_4Cl_2]$ in CDCl₃ showing the isomerization of *trans*-1 to *cis*-1; a small singlet at -11.83 ppm has been omitted for clarity.

Figure 4. ³¹ P {¹H} NMR spectra over time of *trans*-1 in D₂O (* denotes unidentified product(s)). The top spectrum is shifted slightly to show the remaining *trans*-**1** signal.

course of days, this singlet decreases in intensity, concomitant with the appearance of two triplets at -23.40 (t, *cis*-PTA, $^{2}J_{PP} = 21.7$ Hz) and -57.64 ppm (t, *trans* PTA, $^{2}J_{PP} = 21.7$ Hz) (Figure 3). The isomerization process is relatively clean, with a small impurity at -11.83 ppm appearing and some decomposition evident as a small amount of precipitate is observed over time. The cis/trans ratio appears to reach equilibrium in CDCl₃ over the course of a week ($K_{eq} \approx 1.84$).

Isomerization of *trans***-1 in Water.** The dissolution of **1** in D_2O was monitored by ${}^{31}P\{H\}$ NMR spectroscopy. Freshly prepared samples of 1 in D_2O contain a single phosphorus resonance at -51.62 ppm attributed to *trans*-1. Over a period of 1 week, *trans*-**1** is observed to essentially completely isomerize to *cis*-**1** along with the formation of at least one other species (Figure 4). This is consistent with reports of Joo´ and co-workers, who observed a series of substitutional isomers $\text{[Ru(PTA)_n(OH₂)_{6-n}]}^{2+}$ from the reaction of [Ru(OH_2)_6]^{2+} with PTA.¹² The resonances for *cis*-1 are observed at -24.0 ppm (t, $^2J_{\text{PP}} = 22.7$ Hz, *cis*-PTA) and -54.9 ppm (t, $^2J_{PP} = 22.7$ Hz, *trans*-PTA). This agrees well with the ${}^{31}P\{ {}^{1}H \}$ NMR data reported by Joó for *cis*-[Ru- $(PTA)₄(OH)₂$], which exhibited peaks at -17.1 (t) and -51.8 (t) ppm in D₂O with ² $J_{PP} = 27.6$ Hz.¹² Other resonances observed include quartets at -15.1 ppm $(^{2}J_{PP} = 26.2$ Hz)
and -25.2 ppm $(^{2}I_{PP} = 24.6$ Hz) and a triplet at -59.7 ppm and -25.2 ppm (${}^{2}I_{PP} = 24.6$ Hz) and a triplet at -59.7 ppm
 ${}^{2}I_{PP} = 21.7$ Hz). The dynamic behavior of *transal* in an $(^{2}J_{PP} = 21.7$ Hz). The dynamic behavior of *trans*-1 in an aqueous medium was further confirmed by UV -vis absorpaqueous medium was further confirmed by UV -vis absorption spectroscopy. The UV-vis absorption spectrum of an

aqueous solution of *trans*-**1** contains two major absorbance features at 320 and 459 nm. The absorbance at 320 nm increases and shows a slight bathochromic (red) shift over time, attributed to ligand-exchange processes of [Ru- $(PTA)_4Cl_2$].

Isomerization of *trans***-1 in Acidic Solution.** The speciation of **1** in 2 mM HCl solution was also investigated by $31P{1H}$ NMR spectroscopy. The $31P{1H}$ NMR spectrum of **1** in acidic solution contains resonances assigned to *trans*-**1** $(-49.41$ ppm), $\text{[Ru(PTAH)(PTA)₂Cl₃]}$, and free [PTAH]^+ (-90 ppm) . The resulting acidic solution of 1 was monitored for 2 weeks, revealing the consumption of *trans*-**1** and the formation of *cis*-**1**. The 31P{¹ H} NMR resonances for *cis*-**1** appear at δ -24.45 ppm (t, ² J_{PP} = 22.7 Hz, *cis*-PTA) and -55.19 ppm (t, $^{2}J_{PP} = 22.7$ Hz, *trans*-PTA). The ³¹P NMR spectrum also contains a triplet at -4.54 ppm $(^{2}J_{PP} = 28.2$
Hz, $[PT\Delta H]^{+}$ and a doublet at -43.88 ppm $(^{2}I_{PP} = 28.2$ Hz, [PTAH]⁺) and a doublet at -43.88 ppm ($^{2}J_{PP} = 28.2$ Hz, PTA) tentatively assigned as $[Ru(PTAH)(PTA)₂Cl₃]$. Darensbourg et al. have observed the formation of [Ru- $(PTAD)(PTA)_{2}Cl_{3}$] in a DCl solution and isolated [Ru- $(PTAH)₂(PTA)₂Cl₂](Cl)₂$ from a 0.1 M HCl solution.^{5b} An analogous rhodium complex, $[RhCl(PTAH)(PTA)₂]Cl₃$, has been synthesized and spectroscopically characterized.13 Other potential products include the previously reported [Ru- $(PTAH)_2Cl_4$],¹⁴ the Ru(III) complex RuCl₃(PTA)₂ \cdot 2HCl₁^{5a} or any of the varieties of Ru(II) aquo/hydroxide/PTA species such as $[Ru(PTA)_{4}(H_{2}O)(OH)]^{+}$ or $[Ru(PTA)_{4}(H_{2}O)_{2}]^{2+}$ reported by Joó and co-workers.¹²

The aforementioned results confirmed that $[Ru(PTA)_4Cl_2]$ is synthesized as the trans isomer. $[Ru(PTA)_4Cl_2]$ undergoes trans-cis isomerization in water and chloroform at room temperature and explains the isolation of *cis*-**1** from an aqueous solution of **1**. ⁵ Similarly, the analogous complex $[Ru(PMe₃)₄Cl₂]$ is reported to afford the trans isomer confirmed by a single resonance at -47.0 ppm in CD_2Cl_2 .¹⁵
Cis $-$ trans isomerization of the related metal-phosphine Cis-trans isomerization of the related metal-phosphine complexes $[MCl_2(DPPM)_2]$ (M = Ru, Os; DPPM = bis-(diphenylphosphino)methane), has been reported to occur by photochemical or electrochemical processes.^{16,17} The reverse process, trans-cis isomerization of $[MCl_2(DPPM)_2]$, was shown to occur by employing heat or copper(I) halides as catalysts.17

Synthesis and Reactivity of *cis***-**[$Ru(PTA)_{4}(H)_{2}$]. The reaction of *trans*-**1** with 10-fold excess of sodium formate afforded the water-soluble ruthenium hydride, *cis*-[Ru- $(PTA)_{4}H_{2}$] (2); $S_{25^{\circ}C} = 106$ mg/mL (0.15 M), as a yellow
precipitate in 62% yield after workup (Scheme 3). Compound precipitate in 62% yield after workup (Scheme 3). Compound **2** has been partially generated $(\leq 5\%)$ in solution^{6a} by the reaction of an aqueous solution of 1 under H_2 pressure at pH 12.6a Compound **2** is insoluble in methanol, acetone, and chlorinated solvents such as chloroform and methylene

- (16) Sullivan, B. P.; Mayer, T. J. *Inorg. Chem.* **¹⁹⁸²**, *²¹*, 1037-1040.
- (17) Zhu, Y.; Wolf, M. O. *Inorg. Chem.* **¹⁹⁹⁷**, *³⁶*, 5483-5487.

⁽¹²⁾ Kova´cs, J.; Joo´, F; Be´nyei, A.C.; Laurenczy, G. *Dalton Trans.* **2004**, ²³³⁶-2340.

⁽¹³⁾ Darensbourg, D. J.; Stafford, N. W.; Joo´, F.; Reibenspies, J. H. *J. Organomet. Chem*. **¹⁹⁹⁵**, *⁴⁸⁸*, 99-108. (14) Akbayeva, D. N.; Moneti, S.; Peruzzini, M.; Gonsalvi, L.; Ienco, A.;

Vizza, F. *C. R Chim.* **²⁰⁰⁵**, *⁸*, 1491-1496. (15) Siebaid, H. G. L.; Fabre, P-L.; Dartiguenave, M.; Dartiguenave, Y.;

Simard, M.; Beauchamp, A. L. *Polyhedron* **¹⁹⁹⁶**, *¹⁵*, 4221-4225.

Scheme 3

chloride. The proton NMR spectrum of 2 in D_2O contains an AB quartet centered at δ 4.34 and 4.26 ppm (${}^{2}J_{\text{HAHB}}$ = 14.5 Hz) for NCH₂N protons and two singlets at 3.63 and 14.5 Hz) for NC*H*2N protons and two singlets at 3.63 and 3.58 ppm for the $PCH₂N$ protons of PTA. The Ru-H signal was recorded at high field, -11.50 ppm, as a multiplet in agreement with the value earlier reported.^{6 31} $P{^1H}$ NMR spectrum of **2** is also consistent with that reported in the literature.⁶ The IR spectrum of 2 contains a broad absorbance at 1800 cm⁻¹ assigned to the ν (Ru-H) stretch.

Compound **2** is stable in air both in the solid state and in aqueous solution. Unlike **1**, an aqueous solution of **2** monitored by ${}^{31}P{^1H}$ NMR spectroscopy over a week showed no evidence of decomposition, ligand protonation, or exchange.

The ruthenium hydride, **2**, does undergo H/D exchange with D₂O, affording *cis*-[Ru(PTA)₄D₂], Scheme 4. This is confirmed by the disappearance of the hydride resonance in the ¹H NMR spectrum of 2^{18} Upon the addition of D_2O , the absorption at 1800 cm⁻¹, $\nu(\text{Ru}-\text{H})$, is no longer visible in
the IR spectrum and a new absorbance at 1303 cm⁻¹ is the IR spectrum and a new absorbance at 1303 cm^{-1} is observed corresponding to *^ν*(Ru-D). The isotopic shift (∆*^ν* $=$ 497 cm⁻¹) is close to the value expected from Hooke's
law for a pure Ru -H stretching mode (calculated shift 554 law for a pure Ru-H stretching mode (calculated shift 554 cm⁻¹).¹⁹ The rate of H/D exchange for **2** in D₂O ($t_{1/2} \approx 120$ min, at 25 °C) is comparable to that observed for the related organometallic analogue CpRu(PTA)₂H ($t_{1/2}$ = 127 min, at 25 °C).4e Joo´ and co-workers have reported that **1** catalyzes the H/D exchange between D_2O and H_2 under acidic conditions (pH 5.5 TOF = 8.5 h⁻¹ at 25 °C, TOF = mol HDO formed/mol cat/h).²⁰ Presumably occurring through a $Ru-H$ complex, either $Ru(PTA)_{4}HC$ or $Ru(PTA)_{4}H_{2}$.

Colorless block crystals of the tetrakis-phosphino ruthenium(II) dihydride, cis -[Ru(PTA)₄H₂], were obtained by the slow diffusion of acetone into an aqueous solution of **2**. *cis*-

Figure 5. Thermal ellipsoid representation of **2** (50% probability) including the atomic numbering scheme. Hydrogen atoms have been omitted for clarity.

 $[Ru(PTA)₄H₂]$ crystallized in the monoclinic space group $P2₁/c$. Presented in Figure 5 is the thermal ellipsoid representation of *cis*-[Ru(PTA)4H2]. Selected bond lengths and angles of *cis*-[Ru(PTA)4H2] are contained in Table 2. The Ru-P bond lengths for 2 are $2.2904(5)$ Å for the cis PTA ligands and 2.2999(5) Å for the trans phosphorus ligands. These values are within the range recorded for the chloride analogue $(2.252 - 2.388 \text{ Å})$.⁵ The most significant structural difference between 2 and *cis*-[Ru(PTA)₄Cl₂] is the ^P-Ru-P bond angle of the trans PTA ligands. The P-Ru-^P bond angle for *cis*-[Ru(PTA)₄Cl₂] (164.81 Å) is 14.8° greater than that for cis -[Ru(PTA)₄H₂] (150.05 Å) and can be ascribed to both the smaller steric requirement of H^- versus Cl^- and an electronic effect. On the basis of electronic effects, the PTA ligands would be expected to move toward the hydride, as H^- is a better σ donor than Cl^{-1} . The (N)C-N distances of the PTA ligands are found to be in the range of $1.45-1.49$ Å, consistent with that of nonprotonated PTA ligands.¹¹ Six equiv of water co-crystallize with **2** and are hydrogen bound to the nitrogen atoms of the PTA ligands. The N'''O separations are found to be between 2.8301 and 2.908 Å, well within standard hydrogen-bonding distances.¹⁸

Conclusions

We have presented here the isolation and solid-state characterization of *trans*-[Ru(PTA)4Cl2] and *cis*-[Ru(PTA)4H2]. The air-stable ruthenium hydride *cis*-[Ru(PTA)₄H₂] has been synthesized, isolated, and characterized by X-ray crystallography. *cis*-[Ru(PTA)₄H₂] undergoes H/D exchange with D₂O at room temperature ($t_{1/2} \approx 120$ min, 25 °C). From the spectroscopic and crystallographic data presented, we conclude that the isolation of *cis*-[$Ru(PTA)_4Cl_2$] from an aqueous solution of **1** results from the isomerization of the trans

⁽¹⁸⁾ See the Supporting Information.

^{(19) (}a) Drago, R. S. *Physical Methods for Chemists*, 2nd ed.; Saunders: Philadelphia, 1992. (b) Krimm, S. *Infrared Spectroscopy and Molecular Structure*; Elsevier: New York, 1963; Chapter 8.

*i*somer. This study and others^{$5-7,12,20$} show that the ligandexchange chemistry of **1** and related compounds in water is complicated and affords a wide variety of species.

Acknowledgment. We gratefully acknowledge financial support from the National Science Foundation (NSF CHE-0645365) and the Petroleum Research Fund (PRF 43574- G3). NSF is also acknowledged for the X-ray diffractometer

(CHE-0226402) and NMR (CHE-0521191) facilities. The authors also thank John Nelson and Vince Catalano for helpful discussions.

Supporting Information Available: Full tables of bond lengths and angles for *trans*-**¹** and **²**, IR spectra of **²** and **²**-D, UV-vis spectra of *trans*-**1** in water, 31P and 1H NMR spectra of **1** and **2**, ¹H NMR spectra of 2 in D₂O over time; crystallographic files in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC700971N

⁽²⁰⁾ Kova´cs, G.; Na´dasdi, L.; Laurenczy, G.; Joo´, F. *Green Chem.* **2003**, *⁵*, 213-217.

⁽²¹⁾ Elian, M.; Hoffmann, R. *Inorg. Chem.* **¹⁹⁷⁵**, *¹⁴*, 1058-1076.